
A new approach to measuring dark matter density in the Milky Way has been introduced by researchers from The University of Alabama in Huntsville (UAH). The study outlines how gravitational acceleration measurements from pulsars can provide insights into the distribution of dark matter in the galaxy. With an expanded dataset including solitary pulsars, scientists have been able to refine their findings, marking a significant advancement in astrophysical research. The ability to measure accelerations at an unprecedented scale has enabled the team to determine local dark matter density with greater accuracy. The findings suggest that in a volume equivalent to Earth, less than 1 kilogram of dark matter is present, highlighting its rarity despite its dominance in the universe’s total mass.
Use of Solitary Pulsars for Dark Matter Measurement
According to the study published on the arXiv preprint server, earlier research relied on binary millisecond pulsars to measure galactic acceleration. Dr. Sukanya Chakrabarti, Pei-Ling Chan Endowed Chair at UAH, explained to Phys.org that most pulsars exist as solitary objects rather than in pairs. By incorporating solitary pulsars into their methodology, the research team has effectively doubled the sample size available for analysis. This expansion allows for a more precise mapping of the Milky Way’s gravitational field, including its dark matter distribution.
Galactic Wobble and Its Role in Measurement
The study also delves into the effects of the Large Magellanic Cloud (LMC) on the Milky Way. Dr. Chakrabarti told Phys.org that the LMC’s gravitational influence creates an imbalance in the Milky Way, leading to an observable wobble. This asymmetry has now been quantified for the first time through pulsar acceleration data. The impact of this gravitational interaction provides further evidence supporting the study’s findings on dark matter distribution.
Addressing Magnetic Braking in Pulsar Acceleration Analysis
A challenge in previous research was accounting for the spindown effect caused by magnetic braking in pulsars. Dr. Tom Donlon, a postdoctoral associate at UAH, explained to Phys.org that binary pulsars were initially used because their orbits remained unaffected by magnetic braking. The latest study has introduced a method to estimate magnetic braking effects with high accuracy, allowing solitary pulsars to be incorporated into acceleration measurements. This advancement broadens the scope of analysis and strengthens the reliability of the findings.
Future Prospects in Dark Matter Research
With the ability to measure accelerations as small as 10 cm/s per decade, the research team believes that mapping the dark matter distribution in the Milky Way with high precision is now within reach. Dr. Chakrabarti stated to Phys.org that while large accelerations near black holes and the galactic center have been measured in the past, this study marks the first time such small accelerations caused by dark matter have been directly observed. The findings contribute significantly to the ongoing efforts to understand the elusive nature of dark matter and its role in shaping the cosmos.
For details of the latest launches and news from Samsung, Xiaomi, Realme, OnePlus, Oppo and other companies at the Mobile World Congress in Barcelona, visit our MWC 2025 hub.