January 22, 2025
KAIST Researchers Increase Lithium Metal Battery Lifespan by 750 Percent
KAIST researchers have developed a groundbreaking method to extend the lifespan of lithium metal batteries by 750%. By using an eco-friendly protective layer made of hollow nanofibres, the team was able to significantly enhance the performance of lithium anodes. This process, which uses guar gum and water, not only improves battery life but also reduces environmental ...

The lifespan of lithium metal batteries has been significantly extended by researchers from the Korea Advanced Institute of Science and Technology (KAIST). A study published in Advanced Materials details the development of an eco-friendly protective layer, resulting in a 750 percent increase in the lifespan of lithium metal anodes. According to the research, water served as the only solvent during the manufacturing process, addressing both environmental concerns and battery performance challenges.

Groundbreaking Eco-Friendly Solution

The study was published in the journal Advanced Materials. Professor Il-Doo Kim from KAIST’s Department of Materials Science and Engineering, alongside Professor Jiyoung Lee from Ajou University, led the research. A protective layer using hollow nanofibres was created through an electrospinning process, relying on guar gum extracted from plants. The approach eliminates the need for toxic materials typically used in such technologies, according to reports.

This layer functions both physically and chemically, stabilising lithium-ion growth and suppressing dendrite formation. The hollow spaces within the fibres minimise random lithium accumulation on the metal surface. Reports indicate that this innovative design maintains 93.3% capacity even after 300 charge-discharge cycles.

Impact on Battery Technology

It has been stated that conventional protective coatings often involve expensive and environmentally harmful processes, with limited efficacy. In contrast, the KAIST method prioritises sustainability, as the biodegradable layer decomposes completely in soil within a month.

Speaking to several media outlets, Professor Kim explained that the dual-action mechanism of the protective layer allowed for improved control over reversible reactions between lithium metal and electrolytes. This, he emphasised, achieved a longer-lasting anode with reduced environmental impact.

As battery demand continues to grow, the team’s water-based, eco-conscious method is expected to contribute significantly to the development of next-generation energy storage systems. These findings mark an important step towards reducing the ecological footprint of battery production and disposal, as reported by experts

For the latest tech news and reviews, follow Gadgets 360 on X, Facebook, WhatsApp, Threads and Google News. For the latest videos on gadgets and tech, subscribe to our YouTube channel. If you want to know everything about top influencers, follow our in-house Who’sThat360 on Instagram and YouTube.


Jupiter’s Moon Io Shows No Magma Ocean as New Findings Explain Volcanic Eruptions



Xiaomi Civi 5 Pro Tipped to Get Snapdragon 8s Elite SoC, 1.5K Resolution Display, More